Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense.
نویسندگان
چکیده
Genes involved in magnetite biomineralization are clustered within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Their transcriptional organization and regulation were studied by several approaches. Cotranscription of genes within the mamAB, mamDC, and mms clusters was demonstrated by reverse transcription-PCR (RT-PCR) of intergenic regions, indicating the presence of long polycistronic transcripts extending over more than 16 kb. The transcription start points of the mamAB, mamDC, and mms operons were mapped at 22 bp, 52 bp, and 58 bp upstream of the first genes of the operons, respectively. Identified -10 and -35 boxes of the P(mamAB), P(mamDC), and P(mms) promoters showed high similarity to the canonical sigma(70) recognition sequence. The transcription of magnetosome genes was further studied in response to iron and oxygen. Transcripts of magnetosome genes were detected by RT-PCR both in magnetic cells grown microaerobically under iron-sufficient conditions and in nonmagnetic cells grown either aerobically or with iron limitation. The presence of transcripts was found to be independent of the growth phase. Further results from partial RNA microarrays targeting the putative magnetosome transcriptome of M. gryphiswaldense and real-time RT-PCR experiments indicated differences in expression levels depending on growth conditions. The expression of the mam and mms genes was down-regulated in nonmagnetic cells under iron limitation and, to a lesser extent, during aerobic growth compared to that in magnetite-forming cells grown microaerobically under iron-sufficient conditions.
منابع مشابه
Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1
Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and acting as carriers of enzymes, antib...
متن کاملFunctional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of larg...
متن کاملGenetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense.
Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB, and mamXY operons. Here, we demonstrate that the five previously uncharacterized...
متن کاملA novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1
Magnetotactic bacteria (MTB) are specialized microorganisms that synthesize intracellular magnetite particles called magnetosomes. Although many studies have focused on the mechanism of magnetosome synthesis, it remains unclear how these structures are formed. Recent reports have suggested that magnetosome formation is energy dependent. To investigate the relationship between magnetosome format...
متن کاملStructure prediction of magnetosome-associated proteins
Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 9 شماره
صفحات -
تاریخ انتشار 2006